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Abstract 
To achieve the real-time requirement of realistic 
deformable modelling, it is necessary to use the 
acceleration techniques such as GPU computing for 
FEM and employ the feasible hybrid structures in a 
virtual surgery simulation system. In this paper, we 
present a linear or nonlinear deformable model of soft 
tissue. In addition to the efficient meshing and basic 
finite element method, the high computation rate is 
achieved through two novel methods. Firstly, the major 
calculation work in the Conjugate Gradient solver for 
deformation is moved from the CPU to GPU in order to 
promote the calculation. Secondly, we apply the hybrid 
structures of deformable models, by fully calculating the 
volumetric deformation in the local operation part while 
only calculating the global deformation by medial 
representation method. Experiments have been given to 
show the feasibility and efficiency of the model. 
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1. Introduction 
Virtual surgery is a promising application to train intern 
surgeons. It can reduce the costs and risks in surgical 
training. To pursue the idea of virtual surgery, it is 
necessary to model the human tissue in virtual reality, 
simulate the motions and deformations of the tissue and 
provide interactive interface for the manipulator. The 
intern surgeon will use common surgery tools to 
manipulate the artificial soft tissue through the interface 
of the computer. 

Although the simulation of human soft tissue has a long 
history in biomedical engineering and computer science, 
physically realistic modelling and computation of soft 
tissue’s deformation has been the bottleneck of many 
applications, especially virtual surgery system. So far 
many simulations of deformation have been 
implemented using simple models: Mass-Spring [1], 
linear elastic FEM [3], [4], Centerline or Skeleton [11], 
Medial Representation Model [12] and so on. These 
methods work well for simulations of very small strains 
and local deformations, but have poor accuracy for large 
global deformation modelling.  

In previous researches, the efficiency and robustness of 
the models are the main interests for surgery simulation 
systems, but the accuracy is of less concern. Nowadays, 
in some virtual surgeries realistic simulation is more 
important. For example, in facial plastic surgery 
simulations, the doctor and the patient are concerned 
about what it will look like after surgery, while they 
need a realistic simulation with high accuracy.  

Global deformation [2] is commonly happened in 
medical domain and worth simulating for virtual surgery, 
such as large twisting or bending of an object, which 
involves the entire body. We could take the human 
intestine as a good example, for this case: while 
observing the patient’s intestine, it is inevitable that the 
patient will move and so will his/her intestine move 
dynamically. In this situation, which is different from 
other soft tissue’s minor deformations like needle 
insertion, scalpel cutting or forceps nipping, the intestine 
will move globally.  

Many problems in mechanics and physics lead to 
differential equations, and most of which are impossible 
to be solved in analytic way. Finite Element Method 
([2]-[7]) is such a numerical method that subdivides the 
object to a finite set of primitives, such as tetrahedral 
mesh, with a physical equilibrium equation for each of 
them. With application of variational principle, it can 
transform to problems of solving large systems of linear 
equations. And Conjugate Gradient algorithm [8] is a 
popular algorithm for solving large sparse symmetrical 
linear systems.  

In this paper, first, we would focus on simulation for 
deformation of soft tissue in virtual surgery using 
nonlinear FEM in contrast with linear FEM. Besides, we 
would consider collision detection [10], as well as the 
methods for reducing complexity and expense of 
computation. Then, we mainly introduce the acceleration 
techniques of GPU Computing and Hybrid Deformable 
Model Structures. At last, we would conclude our 
experimental results based on 3D kidney model and 
blood vessel model. 

2. Improved Delaunay Meshing 
To simulate a continuum solid object using computer, 



 

we must discrete it into a number of elements firstly. In 
this paper, we generate tetrahedral mesh based on 
Delaunay criterion with improvement [15].  

By far most of the tetrahedral meshing techniques are 
utilizing the Delaunay criterion. The criterion states that 
for n-dimensional cases a circum-sphere of each simplex 
within the mesh contains only the n+1 defining points of 
the simplex.  

There are some open source tools that can create mesh 
for 3D objects maintaining Delaunay criterion, such as 
the Visualization Toolkit (VTK). But the VTK can’t 
preserve initial boundary, and produces sliver 
tetrahedrons if the surface is complex.  

We have improved the Delaunay algorithm to generate a 
well-proportioned, boundary preserved mesh for latter 
deformation. The following is the steps we should take: 
1) find the circum-cube of the bound box which contains 
the source object represented by boundary points and 
facets, and mesh the cube into 5 tetrahedrons; 2) 
subdivide the circum-cube into small cubes and store all 
vertices of the cubes; 3) disarrange all points gotten in 
step 2 within a small range to decrease the probability of 
4 points co-planarity; 4) generate interior points from 
output of step 3; 5) insert boundary points and interior 
points into the 5 tetrahedrons gained in step 1 according 
to the Delaunay criterion; then, check boundary points 
and topology preservation; last, deal with sliver 
tetrahedrons. We detect the sliver tetrahedrons by 
calculating the standard deviation of their edges and 
comparing with a defined criterion. If the standard 
deviation is bigger than criterion we would re-mesh the 
sliver tetrahedron with its neighbours until satisfying.  

3. Nonlinear Finite Elements Deformation 
The theory of elasticity is a fundamental discipline in 
studying continuum materials. It consists of equilibrium 
equations, kinematics equations, constitutive equations 
and boundary conditions. Synthesizing all those 
equations allows us to establish a relationship between 
the deformation of object and external force. But in most 
cases, an analytic expression of this relationship is 
impossible. Finite element method is one way to solve 
such problems.  

FEM is one of the most popular and stable numerical 
methods in engineering analysis. In this paper, we only 
discuss elasticity in the context of FEM.  

Using this method, we should follow these steps: 
discrete the volumetric solid into a number of finite 
elements, which has been discussed in previous section; 
select the displacement function, and we use linear 
interpolation in tetrahedral mesh; construct element 
stiffness matrices considering physical equilibrium; 
assemble element matrices into a global stiffness matrix; 
solve the system of equations; calculate other unknowns 
such as strains and stresses. In implementation, we only 
calculate displacements at vertices of each tetrahedron, 

the values at other points within the elements are 
interpolated by a weighed sum of all the nodal 
displacements.  

3.1   Static Deformation 

For static deformation, it is required to solve the 
following system of equations  

FaR =)(   (1) 

where [ ]Tnnn wvuwvua L111=  is the 3n-
dimensional nodal displacement vector for 3D objects, 
and u, v, w are the corresponding displacement variables 
at given point; R(a), the internal force vector due to 
deformation; F, the external force vector.  

Usually the engineering strain vector is defined as  
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Many previous works ([3], [4]) using linear strain as 
following: 
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where x, y, z are the independent variables of the 
Cartesian frame. Other terms of the strain are defined 
similarly.  

This linear strain vector makes the internal force vector 
R(a) linear to the nodal displacement vector a. Namely 
equation (1) can be written as following linear system: 

FKa =  (5) 

where K is the constant stiffness matrix independent 
with a .  

However, the approach is only suitable for simulating 
small local deformations, e.g., poking and small bending. 
Using the linear strain to simulate large global 
deformations will cause distortion. It is because that this 
linear strain models rigid motions as differential 
motions. If we subject a large rigid body bending to an 
un-deformed object, the linear strain (3) and (4) will give 
a non-zero strain, but the object should not have any 
deformation actually.  

In virtual surgery, large global deformations are crucial. 
To simulate global deformations, we use quadratic strain 
instead. So the strain vector become following 
expressions:  
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This nonlinear strain vector makes the internal force 
vector R(a) dependent to a. So equation (1) now 
becomes a nonlinear system. We can rewrite R(a) as the 
following expression:  

aaPKaR ⋅+= ))(()(   (8) 

where K is the same as the constant matrix derived from 
linear strain, P(a) is the term depends on the nodal 
displacement vector a.  

To solve this nonlinear system of equations, we use 
Newton-Raphson method as following: 
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This is an iterative numerical solution, and the main cost 
is calculating the inverse of matrix. Because the stiffness 
matrix is large, sparse and symmetric, we use Conjugate 
Gradient [9] method to solve the system of equations.  

The simulations of static linear versus nonlinear strain 
deformation for an elastic beam are shown in fig.1. In 
the picture, the green mesh represents the original state, 
while the yellow and red ones as the state caused by 
body force, for example gravitation. We can see that the 
yellow mesh is stretched under the body force, which is 
distortion, while the red one simulates the deformation 
realistically.  

Soft tissue is much more complex, and usually there are 
many large motions in surgery. So, if we want to get 
realistic simulations for soft tissue’s deformation, the 
nonlinear strain models should be applied.  

 

Fig. 1.  Simulations for static linear strain deformation 
and nonlinear strain deformation are shown respectively. 
The yellow mesh is linear strain deformation while the 
red one is nonlinear strain deformation.  

3.2   Dynamical Deformation 

To model dynamical deformation of elastic objects, we 
should solve the following system of differential 
equations: 

FaRaDaM =++ )(&&&  (11) 

where a&& , a&  are the respective acceleration and velocity 
vectors; M, the mass matrix, D, the damping matrix. 
Actually, equation (11) can become equation (1) leave 
out of account the acceleration and velocity vectors.  

We have to solve the system of differential equations 
(11) approximately by numerically integrating along 
time dimension. Namely we have to solve the system of 
equations at a time step according to the previous time 
steps.  

In this paper, we use center difference method, which is 
simplicity of Newmark recurrence scheme. It’s a single-
step explicit integration method, namely it only use 
values at t(n) to solve the system at ttt nn Δ+=+ )()1( . So 
we use the following iterative expression:  
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We should solve the system at each time step to get 
some displacements for dynamical simulation. But 
fortunately, the mass matrix M and the damping matrix 
D usually are constant, and we can approximate M by a 
diagonal matrix [5], then apply Rayleigh damping 
D=λM. These simplify the computation very much. We 
only need to recalculate the external force F and internal 
force R(a) at each step. For soft tissue, the time steps can 

be large. Besides, we need to initialize 0a , 0a& , 0a&&  and 
calculate the following value:  
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It’s necessary to point out that the time step tΔ  must not 
be larger than a critical time step which has relationship 
with the smallest element in the mesh [5]. So we want a 
nice mesh without too small elements or sliver 
tetrahedrons for soft tissue, that’s what we have 
discussed in section 2. 

3.3   Efficient Collision Detection by Hashing 

Collision detection is very important in any realistic 
interactive environment, so as in virtual surgery. 
Generally, collision detection algorithms need to deal 
with broad-phase which determines all potential collision 



 

pairs and narrow-phase which tests intersection between 
two complex geometrical models.  

However, it is challenging when regarding the 
deformable models. Here we consider an adaptive multi-
resolution spatial partitioning algorithm [10] to detect 
collision occurring between a simple rigid object and a 
complex deformable body. It divides the space into a 
number of grid-cells and uses a hash table to store the 
position information of the deformable objects and their 
vertexes. We should find an optimal cell-size for each 
object and map each cell and vertex to a unique address 
in hash table. A 2D example is shown in fig. 2. In 
simulation, the grid-cells each object occupies are 
computed at each time step and all occupied cells have 
references to the corresponding objects. Then, for each 
vertex in the scene, test it for intersection with other 
objects that occupy the same grid-cell. 

 

Fig. 2.  Map cells occupied by triangles and the vertexes 
to Hash table. Vertexes and triangles in the same Hash 
table index should be tested for intersection. 

4. High Precision GPU Numerical Computation 
The meshing structure of the deformable model is 
changing during the simulation. The relevant equation is 
constructed and solved in every different processing 
step. Along with the size of the model increasing, the 
time spent by the collision detection rises as a linear 
function of the model scale. And the time of constructing 
the new global stiffness matrix is squared. Solving the 
linear system is about cubed complexity, which takes 
almost seventy to eighty percent of the time executed by 
the operation area. Therefore, solving the linear 
algebraic equations is the bottleneck of the whole 
simulation. It directly impacts the feedback speed of the 
system. In our system, we use the Conjugate Gradient 
iteration to solve the linear equations. The global 
stiffness matrix derived from FEM exhibits a feature of 
large size, sparse distribution of non-zero elements, 
symmetric and positive definite, this sufficiently meets 
the requirement of the condition of ordinary Conjugate 
Gradient algorithm.  

The main computation in each round of the Conjugate 
Gradient algorithm is the matrix and vector 
multiplication, so the zero elements of the matrix would 
remain the same in the calculation process, which 
indicates it more suitable for its implementation onto the 
GPU. In this section, we introduce our method of 
mapping the calculation module onto the GPU. The 
Conjugate Gradient solver includes three main 

operations: 1) multiplication of the sparse matrix and the 
vector, 2) addition of two vectors and 3) the sum 
reduction operation. The kernel step is the multiplication 
of the sparse matrix and the vector. We move this part of 
calculation into the fragment processor of the GPU, to 
utilize GPU fragment processor in its highly efficiently 
manipulation of the local texture memory on the 
mathematical calculation. The basic principle is to load 
matrices and vectors as textures into the GPU, and then 
rasterize a proper quad of pixels for invoking the 
fragment program, which process the actual calculation 
in the fragment processor. The result can be obtained as 
the color value, transferred directly to the next pass for 
execution or read back to CPU [6]. Fig. 3 shows the 
main idea to employ GPU on matrix vector operation, 
which is the heavies load in deformation computation. 

 

 

Fig. 3. GPU Parallel Computing Architecture 

However, the traditional GPU computing only has Single 
Float data type, while fast Conjugate Gradient solver 
requires high precision data type for each computational 
iteration. Therefore, we employ Double Float Precision 
to achieve it [14]. 

5. Hybrid Structure of Medial Line and Local 
Deformation 

5.1   Medial Centerline and Medial Representation 

Medial Representation algorithm is a model based on 



 

Centerline. It records information of the centerline atoms 
only. When there is a deformation on the centerline, we 
can redraw the object’s surface through the centerline 
information. So Medial Representation is quite 
appropriate to model soft tissue like blood vessel. 

In our model, the centerline is modeled into a Mass-
Spring system. That is, each two neighbor atoms on the 
centerline are linked by a spring, as fig.4 shows. When a 
force is added on the centerline, it’ll deform like any 
mass-spring system. Then we accordingly alternate the 
surface mesh points to reconstruct the entire mesh 
rendering.  

 

Fig.4.  Mass-Spring centerline 

 Due to the efficiency priority to the accuracy in 
simulation, the original Medial Representation method is 
simplified as hubs and spokes structure to sacrifice 
accuracy for speed. 

Traditionally, on the basis of Blum’s medial axes and 
from Medial Representation, Prizer proposed the M-Rep 
method, which is excellent to represent the internal 
structure and uses medial atoms and a particular tuple 

}),,(,,{ θnbFrx to indicate the boundary of the 
deformable object (as shown in Fig.5).  

 

 

Fig. 5. Traditional Medial Representation Structure 

 

In traditional M-Rep method, to draw the whole surface, 
calculate every boundary node by the following formula: 

ABrABRxC BCABV /))((, •+= θ
 (14) 

Where C and x are the coordinates of boundary C and 
medial atom B respectively; R denotes the operator to 
rotate its operand by the argument angle in the plane 

spanned by V and AB; |AB| means the length of the 
vector AB. Other spokes connecting with B can be 
calculated by rotating BC around BA and scale the r 
length. Iterating the process can obtain all boundaries. So 
we can get the whole surface. 

Here, we modified the implement method of the M-Rep 
algorithm a little to simplify the model. That is, we don’t 
use the concept of Orientation Vector, but the method as 
follows. For atom i (i=2,3…n-1) on the centerline, the 
first boundary node B of this atom can be 
anyone(usually we choose the one that on the plane xOy 
of Cartesian coordinates) that satisfies the formula: 
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Where Ci means the ith atom on the centerline. That is, 
CiB must be vertical to vector Ci-1Ci+1, and have the 
length of r.  

Then calculate every boundary node, use the following 
formula: 
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R denotes the operator to rotate its operand by the 
argument angle θ  with the axis represented by the 
vector Ci-1Ci+1,  B’ and x are the coordinates of 
boundary and medial atom Ci respectively. The method 
is showed in Fig.6. 

 

Fig. 6. Surface reconstruction method of simplified M-
Rep (the red line is the centerline) 

5.2   Local Region Deformation 

Most surgery operations are performed in a small area 
on a soft-tissue, so we restrict the deformation in a local 
level if the external force is relatively small in order to 
reduce the calculation time. In the preprocessing stage of 
the application, the Dijkstra algorithm is employed to 
calculate the shortest distance between mass points and a 
distance table, thus recording the distance between all 
points is generated. The deformation procedure is the 
following: if a small force is applied on the white spots 
(Fig. 7) and the propagation of the force is limited in the 
second layer. The optimization will be skipped when the 
external force is larger than the threshold value.  



 

 

 
Fig. 7. (A) The local deformation region (the big white spot) on an 

object. (B) The distances between the center white spot and other mass 
points. 

6   Experiments 

We generate a human kidney mesh using the meshing 
technique discussed above and simulate its deformation 
under a boundary force. Fig. 8 shows the results. And 
observations are showed in Table 1. 

We can see in fig. 8 and table 1 that nonlinear strain 
deformation is closer to the realistic situation, while the 
linear strain deformation is more distorted. 

 

 
Fig. 8.  Left is linear strain deformation of human kidney, while right is 
nonlinear strain deformation. Green meshes represent the original state, 

while the red ones represent deformation state that is caused by an 
equal external force at the purple point. 

 
Item Mesh state Quantity 

Volume Original state 332889 (mm3) 
Linear strain deformation 364543 (mm3)

Nonlinear strain deformation 352602 (mm3) 
 

Surface Area 
 

Original state 
 

208017 (mm2) 
Linear strain deformation 211821 (mm2) 

Nonlinear strain deformation 210744 (mm2) 
Table. 1. Deformation Statistics (on CPU) 

 
However, solving the system of equations takes most 
percent of total time, especially for nonlinear strain 
deformation. In our system, we use Conjugate Gradient 
algorithm to solve the system, which is suitable to 
implement onto the GPU [6], as demonstrated in fig. 9 
and table 2. 

 
Fig. 9. FEM Deformation with Local Region Constrain (on GPU) 

 
N 15 20  25  30

Vertex 1018 1922  3281  5071

Tetra 
3272  6538  11626  18519 

Local Vertex
105  187  335  525 

Loading 
Time (ms) 

63  62  78  109 

Matrix 30542 57662  98432 152132
Error (mm) 0.1 0.1  0.1  0.1

Iteration 
34  44  52  62 

Solve Time 
(ms) 

219  422  750  1297 

Average 
(ms) 

6.44  9.59  14.42  20.92 

Original 
Volume 

111282  118615  122672  124949 

Alternated 
Volume 

111667  118983  123166  124611 

Original 
Area 

11945.5 12449.2  12739.8 12896.5

Alternated 
Area 

11974.7 12488  12799.6 12914.6

Table 2. Deformation Solving Time and Comparison (on GPU) 
 

Last but not least, we apply the hybrid structures of 
deformable models, by fully calculating the volumetric 
deformation in the local operation part while only 
calculating the global deformation by medial 
representation method. Experiments below show the 
feasible result of the model, as shown in fig.10 to fig. 12. 

 

 
Fig. 10. Medial Representation Global Deformation with Local Region 
Deformation (A,B shows Global Deformation, C,D shows large Global 
deformation, E,F shows Global Deformation with Local deformation) 

 



 

 
Fig. 11. Hybrid Model Deformation with Collision Detection 

 

 
Fig. 12. Cutting and Suturing Applications Based on Deformable 

Models 
 

7   Conclusion 
In this paper we focus on the simulation for realistic 
deformation of soft tissue using nonlinear strain FEM, 
because it’s important to simulate large global 
deformation in virtual surgery. And through 
experiments, we take the advantage of using nonlinear 
strain deformation to simulate soft tissue. To achieve 
real-time performance, we apply Revised Delaunay 
Meshing, GPU Computing and Hybrid Deformable 
Structures. 

Aiming at a more accurate and robust level of virtual 
surgery, some other technologies will be also 
implemented, such as condensation [6] for decreasing 
the size of system in FEM. The force feedback devices 
integration and deformation validation problems will 
also be considered and solved in the future. 
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