

Virtual Surgery Deformable Modelling
Employing GPU Based Computation

Pengfei Huang, Lixu Gu, Jingsi Zhang, Xiao Yu, Sizhe Lv, Zhennan Yan,
Luyang Zhang, Hongshan Zhou

Image Guided Surgery and Therapy Laboratory, Shanghai Jiao Tong University,
800 Dongchuan Road, Minhang District, Shanghai, 200240, China

herofay@sjtu.edu.cn

Abstract
To achieve the real-time requirement of realistic
deformable modelling, it is necessary to use the
acceleration techniques such as GPU computing for
FEM and employ the feasible hybrid structures in a
virtual surgery simulation system. In this paper, we
present a linear or nonlinear deformable model of soft
tissue. In addition to the efficient meshing and basic
finite element method, the high computation rate is
achieved through two novel methods. Firstly, the major
calculation work in the Conjugate Gradient solver for
deformation is moved from the CPU to GPU in order to
promote the calculation. Secondly, we apply the hybrid
structures of deformable models, by fully calculating the
volumetric deformation in the local operation part while
only calculating the global deformation by medial
representation method. Experiments have been given to
show the feasibility and efficiency of the model.

Key words: Virtual Surgery, Deformable Model, GPU

1. Introduction
Virtual surgery is a promising application to train intern
surgeons. It can reduce the costs and risks in surgical
training. To pursue the idea of virtual surgery, it is
necessary to model the human tissue in virtual reality,
simulate the motions and deformations of the tissue and
provide interactive interface for the manipulator. The
intern surgeon will use common surgery tools to
manipulate the artificial soft tissue through the interface
of the computer.

Although the simulation of human soft tissue has a long
history in biomedical engineering and computer science,
physically realistic modelling and computation of soft
tissue’s deformation has been the bottleneck of many
applications, especially virtual surgery system. So far
many simulations of deformation have been
implemented using simple models: Mass-Spring [1],
linear elastic FEM [3], [4], Centerline or Skeleton [11],
Medial Representation Model [12] and so on. These
methods work well for simulations of very small strains
and local deformations, but have poor accuracy for large
global deformation modelling.

In previous researches, the efficiency and robustness of
the models are the main interests for surgery simulation
systems, but the accuracy is of less concern. Nowadays,
in some virtual surgeries realistic simulation is more
important. For example, in facial plastic surgery
simulations, the doctor and the patient are concerned
about what it will look like after surgery, while they
need a realistic simulation with high accuracy.

Global deformation [2] is commonly happened in
medical domain and worth simulating for virtual surgery,
such as large twisting or bending of an object, which
involves the entire body. We could take the human
intestine as a good example, for this case: while
observing the patient’s intestine, it is inevitable that the
patient will move and so will his/her intestine move
dynamically. In this situation, which is different from
other soft tissue’s minor deformations like needle
insertion, scalpel cutting or forceps nipping, the intestine
will move globally.

Many problems in mechanics and physics lead to
differential equations, and most of which are impossible
to be solved in analytic way. Finite Element Method
([2]-[7]) is such a numerical method that subdivides the
object to a finite set of primitives, such as tetrahedral
mesh, with a physical equilibrium equation for each of
them. With application of variational principle, it can
transform to problems of solving large systems of linear
equations. And Conjugate Gradient algorithm [8] is a
popular algorithm for solving large sparse symmetrical
linear systems.

In this paper, first, we would focus on simulation for
deformation of soft tissue in virtual surgery using
nonlinear FEM in contrast with linear FEM. Besides, we
would consider collision detection [10], as well as the
methods for reducing complexity and expense of
computation. Then, we mainly introduce the acceleration
techniques of GPU Computing and Hybrid Deformable
Model Structures. At last, we would conclude our
experimental results based on 3D kidney model and
blood vessel model.

2. Improved Delaunay Meshing
To simulate a continuum solid object using computer,

we must discrete it into a number of elements firstly. In
this paper, we generate tetrahedral mesh based on
Delaunay criterion with improvement [15].

By far most of the tetrahedral meshing techniques are
utilizing the Delaunay criterion. The criterion states that
for n-dimensional cases a circum-sphere of each simplex
within the mesh contains only the n+1 defining points of
the simplex.

There are some open source tools that can create mesh
for 3D objects maintaining Delaunay criterion, such as
the Visualization Toolkit (VTK). But the VTK can’t
preserve initial boundary, and produces sliver
tetrahedrons if the surface is complex.

We have improved the Delaunay algorithm to generate a
well-proportioned, boundary preserved mesh for latter
deformation. The following is the steps we should take:
1) find the circum-cube of the bound box which contains
the source object represented by boundary points and
facets, and mesh the cube into 5 tetrahedrons; 2)
subdivide the circum-cube into small cubes and store all
vertices of the cubes; 3) disarrange all points gotten in
step 2 within a small range to decrease the probability of
4 points co-planarity; 4) generate interior points from
output of step 3; 5) insert boundary points and interior
points into the 5 tetrahedrons gained in step 1 according
to the Delaunay criterion; then, check boundary points
and topology preservation; last, deal with sliver
tetrahedrons. We detect the sliver tetrahedrons by
calculating the standard deviation of their edges and
comparing with a defined criterion. If the standard
deviation is bigger than criterion we would re-mesh the
sliver tetrahedron with its neighbours until satisfying.

3. Nonlinear Finite Elements Deformation
The theory of elasticity is a fundamental discipline in
studying continuum materials. It consists of equilibrium
equations, kinematics equations, constitutive equations
and boundary conditions. Synthesizing all those
equations allows us to establish a relationship between
the deformation of object and external force. But in most
cases, an analytic expression of this relationship is
impossible. Finite element method is one way to solve
such problems.

FEM is one of the most popular and stable numerical
methods in engineering analysis. In this paper, we only
discuss elasticity in the context of FEM.

Using this method, we should follow these steps:
discrete the volumetric solid into a number of finite
elements, which has been discussed in previous section;
select the displacement function, and we use linear
interpolation in tetrahedral mesh; construct element
stiffness matrices considering physical equilibrium;
assemble element matrices into a global stiffness matrix;
solve the system of equations; calculate other unknowns
such as strains and stresses. In implementation, we only
calculate displacements at vertices of each tetrahedron,

the values at other points within the elements are
interpolated by a weighed sum of all the nodal
displacements.

3.1 Static Deformation

For static deformation, it is required to solve the
following system of equations

FaR =)((1)

where []Tnnn wvuwvua L111= is the 3n-
dimensional nodal displacement vector for 3D objects,
and u, v, w are the corresponding displacement variables
at given point; R(a), the internal force vector due to
deformation; F, the external force vector.

Usually the engineering strain vector is defined as

.][T
zxyzxyzyx γγγεεεε = (2)

Many previous works ([3], [4]) using linear strain as
following:

x
u

x ∂
∂

=ε
 (3)

x
v

y
u

xy ∂
∂

+
∂
∂

=γ
 (4)

where x, y, z are the independent variables of the
Cartesian frame. Other terms of the strain are defined
similarly.

This linear strain vector makes the internal force vector
R(a) linear to the nodal displacement vector a. Namely
equation (1) can be written as following linear system:

FKa = (5)

where K is the constant stiffness matrix independent
with a .

However, the approach is only suitable for simulating
small local deformations, e.g., poking and small bending.
Using the linear strain to simulate large global
deformations will cause distortion. It is because that this
linear strain models rigid motions as differential
motions. If we subject a large rigid body bending to an
un-deformed object, the linear strain (3) and (4) will give
a non-zero strain, but the object should not have any
deformation actually.

In virtual surgery, large global deformations are crucial.
To simulate global deformations, we use quadratic strain
instead. So the strain vector become following
expressions:

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= 222)()()(
2
1

x
w

x
v

x
u

x
u

xε
 (6)

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
y
w

x
w

y
v

x
v

y
u

x
u

x
v

y
u

xyγ
 (7)

This nonlinear strain vector makes the internal force
vector R(a) dependent to a. So equation (1) now
becomes a nonlinear system. We can rewrite R(a) as the
following expression:

aaPKaR ⋅+=))(()((8)

where K is the same as the constant matrix derived from
linear strain, P(a) is the term depends on the nodal
displacement vector a.

To solve this nonlinear system of equations, we use
Newton-Raphson method as following:

)()()1(nnn aaa Δ+=+
 (9)

))(())(()(1)()(nnn aRFaPKa −⋅+=Δ −
 (10)

This is an iterative numerical solution, and the main cost
is calculating the inverse of matrix. Because the stiffness
matrix is large, sparse and symmetric, we use Conjugate
Gradient [9] method to solve the system of equations.

The simulations of static linear versus nonlinear strain
deformation for an elastic beam are shown in fig.1. In
the picture, the green mesh represents the original state,
while the yellow and red ones as the state caused by
body force, for example gravitation. We can see that the
yellow mesh is stretched under the body force, which is
distortion, while the red one simulates the deformation
realistically.

Soft tissue is much more complex, and usually there are
many large motions in surgery. So, if we want to get
realistic simulations for soft tissue’s deformation, the
nonlinear strain models should be applied.

Fig. 1. Simulations for static linear strain deformation
and nonlinear strain deformation are shown respectively.
The yellow mesh is linear strain deformation while the
red one is nonlinear strain deformation.

3.2 Dynamical Deformation

To model dynamical deformation of elastic objects, we
should solve the following system of differential
equations:

FaRaDaM =++)(&&& (11)

where a&& , a& are the respective acceleration and velocity
vectors; M, the mass matrix, D, the damping matrix.
Actually, equation (11) can become equation (1) leave
out of account the acceleration and velocity vectors.

We have to solve the system of differential equations
(11) approximately by numerically integrating along
time dimension. Namely we have to solve the system of
equations at a time step according to the previous time
steps.

In this paper, we use center difference method, which is
simplicity of Newmark recurrence scheme. It’s a single-
step explicit integration method, namely it only use
values at t(n) to solve the system at ttt nn Δ+=+)()1(. So
we use the following iterative expression:

ttttt

tt

aD
t

M
t

aM
t

aRF

aD
t

M
t

Δ−

Δ+

Δ
−

Δ
−

Δ
−−

=
Δ

+
Δ

)
2

11()2)((

)
2

11(

22

2

(12)

We should solve the system at each time step to get
some displacements for dynamical simulation. But
fortunately, the mass matrix M and the damping matrix
D usually are constant, and we can approximate M by a
diagonal matrix [5], then apply Rayleigh damping
D=λM. These simplify the computation very much. We
only need to recalculate the external force F and internal
force R(a) at each step. For soft tissue, the time steps can

be large. Besides, we need to initialize 0a , 0a& , 0a&& and
calculate the following value:

0

2

00 2
atataa t &&&

Δ
+⋅Δ−=Δ−

 (13)

It’s necessary to point out that the time step tΔ must not
be larger than a critical time step which has relationship
with the smallest element in the mesh [5]. So we want a
nice mesh without too small elements or sliver
tetrahedrons for soft tissue, that’s what we have
discussed in section 2.

3.3 Efficient Collision Detection by Hashing

Collision detection is very important in any realistic
interactive environment, so as in virtual surgery.
Generally, collision detection algorithms need to deal
with broad-phase which determines all potential collision

pairs and narrow-phase which tests intersection between
two complex geometrical models.

However, it is challenging when regarding the
deformable models. Here we consider an adaptive multi-
resolution spatial partitioning algorithm [10] to detect
collision occurring between a simple rigid object and a
complex deformable body. It divides the space into a
number of grid-cells and uses a hash table to store the
position information of the deformable objects and their
vertexes. We should find an optimal cell-size for each
object and map each cell and vertex to a unique address
in hash table. A 2D example is shown in fig. 2. In
simulation, the grid-cells each object occupies are
computed at each time step and all occupied cells have
references to the corresponding objects. Then, for each
vertex in the scene, test it for intersection with other
objects that occupy the same grid-cell.

Fig. 2. Map cells occupied by triangles and the vertexes
to Hash table. Vertexes and triangles in the same Hash
table index should be tested for intersection.

4. High Precision GPU Numerical Computation
The meshing structure of the deformable model is
changing during the simulation. The relevant equation is
constructed and solved in every different processing
step. Along with the size of the model increasing, the
time spent by the collision detection rises as a linear
function of the model scale. And the time of constructing
the new global stiffness matrix is squared. Solving the
linear system is about cubed complexity, which takes
almost seventy to eighty percent of the time executed by
the operation area. Therefore, solving the linear
algebraic equations is the bottleneck of the whole
simulation. It directly impacts the feedback speed of the
system. In our system, we use the Conjugate Gradient
iteration to solve the linear equations. The global
stiffness matrix derived from FEM exhibits a feature of
large size, sparse distribution of non-zero elements,
symmetric and positive definite, this sufficiently meets
the requirement of the condition of ordinary Conjugate
Gradient algorithm.

The main computation in each round of the Conjugate
Gradient algorithm is the matrix and vector
multiplication, so the zero elements of the matrix would
remain the same in the calculation process, which
indicates it more suitable for its implementation onto the
GPU. In this section, we introduce our method of
mapping the calculation module onto the GPU. The
Conjugate Gradient solver includes three main

operations: 1) multiplication of the sparse matrix and the
vector, 2) addition of two vectors and 3) the sum
reduction operation. The kernel step is the multiplication
of the sparse matrix and the vector. We move this part of
calculation into the fragment processor of the GPU, to
utilize GPU fragment processor in its highly efficiently
manipulation of the local texture memory on the
mathematical calculation. The basic principle is to load
matrices and vectors as textures into the GPU, and then
rasterize a proper quad of pixels for invoking the
fragment program, which process the actual calculation
in the fragment processor. The result can be obtained as
the color value, transferred directly to the next pass for
execution or read back to CPU [6]. Fig. 3 shows the
main idea to employ GPU on matrix vector operation,
which is the heavies load in deformation computation.

Fig. 3. GPU Parallel Computing Architecture

However, the traditional GPU computing only has Single
Float data type, while fast Conjugate Gradient solver
requires high precision data type for each computational
iteration. Therefore, we employ Double Float Precision
to achieve it [14].

5. Hybrid Structure of Medial Line and Local
Deformation

5.1 Medial Centerline and Medial Representation

Medial Representation algorithm is a model based on

Centerline. It records information of the centerline atoms
only. When there is a deformation on the centerline, we
can redraw the object’s surface through the centerline
information. So Medial Representation is quite
appropriate to model soft tissue like blood vessel.

In our model, the centerline is modeled into a Mass-
Spring system. That is, each two neighbor atoms on the
centerline are linked by a spring, as fig.4 shows. When a
force is added on the centerline, it’ll deform like any
mass-spring system. Then we accordingly alternate the
surface mesh points to reconstruct the entire mesh
rendering.

Fig.4. Mass-Spring centerline

 Due to the efficiency priority to the accuracy in
simulation, the original Medial Representation method is
simplified as hubs and spokes structure to sacrifice
accuracy for speed.

Traditionally, on the basis of Blum’s medial axes and
from Medial Representation, Prizer proposed the M-Rep
method, which is excellent to represent the internal
structure and uses medial atoms and a particular tuple

}),,(,,{ θnbFrx to indicate the boundary of the
deformable object (as shown in Fig.5).

Fig. 5. Traditional Medial Representation Structure

In traditional M-Rep method, to draw the whole surface,
calculate every boundary node by the following formula:

ABrABRxC BCABV /))((, •+= θ
 (14)

Where C and x are the coordinates of boundary C and
medial atom B respectively; R denotes the operator to
rotate its operand by the argument angle in the plane

spanned by V and AB; |AB| means the length of the
vector AB. Other spokes connecting with B can be
calculated by rotating BC around BA and scale the r
length. Iterating the process can obtain all boundaries. So
we can get the whole surface.

Here, we modified the implement method of the M-Rep
algorithm a little to simplify the model. That is, we don’t
use the concept of Orientation Vector, but the method as
follows. For atom i (i=2,3…n-1) on the centerline, the
first boundary node B of this atom can be
anyone(usually we choose the one that on the plane xOy
of Cartesian coordinates) that satisfies the formula:

⎪⎩

⎪
⎨
⎧

=

=•+−

rBC
BCCC

i

iii 011

 (15)

Where Ci means the ith atom on the centerline. That is,
CiB must be vertical to vector Ci-1Ci+1, and have the
length of r.

Then calculate every boundary node, use the following
formula:

rBRxB
ii CC /)('

11
θ

+−
+= (16)

R denotes the operator to rotate its operand by the
argument angle θ with the axis represented by the
vector Ci-1Ci+1, B’ and x are the coordinates of
boundary and medial atom Ci respectively. The method
is showed in Fig.6.

Fig. 6. Surface reconstruction method of simplified M-
Rep (the red line is the centerline)

5.2 Local Region Deformation

Most surgery operations are performed in a small area
on a soft-tissue, so we restrict the deformation in a local
level if the external force is relatively small in order to
reduce the calculation time. In the preprocessing stage of
the application, the Dijkstra algorithm is employed to
calculate the shortest distance between mass points and a
distance table, thus recording the distance between all
points is generated. The deformation procedure is the
following: if a small force is applied on the white spots
(Fig. 7) and the propagation of the force is limited in the
second layer. The optimization will be skipped when the
external force is larger than the threshold value.

Fig. 7. (A) The local deformation region (the big white spot) on an

object. (B) The distances between the center white spot and other mass
points.

6 Experiments

We generate a human kidney mesh using the meshing
technique discussed above and simulate its deformation
under a boundary force. Fig. 8 shows the results. And
observations are showed in Table 1.

We can see in fig. 8 and table 1 that nonlinear strain
deformation is closer to the realistic situation, while the
linear strain deformation is more distorted.

Fig. 8. Left is linear strain deformation of human kidney, while right is
nonlinear strain deformation. Green meshes represent the original state,

while the red ones represent deformation state that is caused by an
equal external force at the purple point.

Item Mesh state Quantity

Volume Original state 332889 (mm3)
Linear strain deformation 364543 (mm3)

Nonlinear strain deformation 352602 (mm3)

Surface Area

Original state

208017 (mm2)
Linear strain deformation 211821 (mm2)

Nonlinear strain deformation 210744 (mm2)
Table. 1. Deformation Statistics (on CPU)

However, solving the system of equations takes most
percent of total time, especially for nonlinear strain
deformation. In our system, we use Conjugate Gradient
algorithm to solve the system, which is suitable to
implement onto the GPU [6], as demonstrated in fig. 9
and table 2.

Fig. 9. FEM Deformation with Local Region Constrain (on GPU)

N 15 20 25 30

Vertex 1018 1922 3281 5071

Tetra
3272 6538 11626 18519

Local Vertex
105 187 335 525

Loading
Time (ms)

63 62 78 109

Matrix 30542 57662 98432 152132
Error (mm) 0.1 0.1 0.1 0.1

Iteration
34 44 52 62

Solve Time
(ms)

219 422 750 1297

Average
(ms)

6.44 9.59 14.42 20.92

Original
Volume

111282 118615 122672 124949

Alternated
Volume

111667 118983 123166 124611

Original
Area

11945.5 12449.2 12739.8 12896.5

Alternated
Area

11974.7 12488 12799.6 12914.6

Table 2. Deformation Solving Time and Comparison (on GPU)

Last but not least, we apply the hybrid structures of
deformable models, by fully calculating the volumetric
deformation in the local operation part while only
calculating the global deformation by medial
representation method. Experiments below show the
feasible result of the model, as shown in fig.10 to fig. 12.

Fig. 10. Medial Representation Global Deformation with Local Region
Deformation (A,B shows Global Deformation, C,D shows large Global
deformation, E,F shows Global Deformation with Local deformation)

Fig. 11. Hybrid Model Deformation with Collision Detection

Fig. 12. Cutting and Suturing Applications Based on Deformable

Models

7 Conclusion
In this paper we focus on the simulation for realistic
deformation of soft tissue using nonlinear strain FEM,
because it’s important to simulate large global
deformation in virtual surgery. And through
experiments, we take the advantage of using nonlinear
strain deformation to simulate soft tissue. To achieve
real-time performance, we apply Revised Delaunay
Meshing, GPU Computing and Hybrid Deformable
Structures.

Aiming at a more accurate and robust level of virtual
surgery, some other technologies will be also
implemented, such as condensation [6] for decreasing
the size of system in FEM. The force feedback devices
integration and deformation validation problems will
also be considered and solved in the future.

Acknowledgement
The research was partially supported by the Natural
Science Foundation of China, Grant No. 70581171, and
the Shanghai Municipal Research Fund, Grant No.
045118045. The authors are grateful to Prof. Pizer for
sharing his Medial Representation expertise, and Prof.
Peters and Prof. Fenster for the valuable feedbacks. We
are also grateful to Shanghai Renji Hospital and
Shanghai 9th People’s Hospital for providing the
medical data.

References
1. Duysak, A. and Zhang, J. J. 2004. Fast Simulation of

Deformable Objects. In Proceedings of the information

Visualisation, Eighth international Conference on (Iv'04) -
Volume 00 (July 14 - 16, 2004). IV. IEEE Computer
Society, Washington, DC, pp.422-427.

2. Y. Zhuang. Real-time Simulation of Physically Realistic
Global Deformation. Ph. D. thesis of Univ. of California,
CA, 2000. The Eurographics Association 2001.

3. Morten Bro-nielsen. Finite Element Modeling in Surgery
Simulation, Proceedings of IEEE, March 1998, 86(3): pp.
490-503.

4. Igor Nikitin, Lialia Nikitina, Pavel Frolov, Gernot Goebbels,
Martin Göbel, Real-time simulation of elastic objects in
Virtual Environments using finite element method and
precomputed Green’s functions, Eighth Eurographics
Workshop on Virtual Environments, pp. 47-52, 2002.

5. Xucheng Wang, “Finite Element Method,” Qing Hua
University Publishing Company, Beijing, 2003.

6. Wu, W. and Heng, P. A. 2004. A hybrid condensed finite
element model with GPU acceleration for interactive 3D
soft tissue cutting: Research Articles. Comput. Animat.
Virtual Worlds 15, 3-4 (Jul. 2004), pp.219-227.

7. Kardestuncer H, et al. “Finite Element Handbook,”
McGraw-Hill: New York, c1987.

8. Shewchuk, J. R. 1994 An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain. Technical
Report. UMI Order Number: CS-94-125., Carnegie Mellon
University.

9. D. J. Hebert. Symbolic local refinement of tetrahedral grids.
Journal of Symbolic Computation, 11, 1994.

10. Eitz, M.: Realtime Soft Tissue Simulation employing
Constraint Based Particle Systems and Hierarchical Spatial
Hashing. Master Thesis of Shanghai Jiao Tong
University(2006).

11. Huang, P., Gu, L., and Zhang, S.: Real-Time Simulation for
Global Deformation of Soft-Tissue Using Deformable
Centerline and Medial Representation. ISBMS (2006)67-74.

12. Shaoting Z, Lixu G, Weiming L, Jingsi Z, Feng Q: Real-
time virtual surgery simulation employing MM-Model and
Adaptive spatial hashing, ICAT(2006).

13 NVIDIA CUDA Programming Guide (v.0.8). NVIDIA
corporation: 2007.4

14 Jens Krüger, Rüdiger Westermann. Linear Algebra
Operators for GPU Implementation of Numerical
Algorithms. SIGGRAPH. 2003.

15 Xiao Yu et al. Novel Tetrahedral Mesh Generation Method
based on Delaunay Criteria and Space Disassembling.
Submitted to ICAT 2007.

